Efficient Calculation of Free Energy Differences Associated with Isotopic Substitution Using Path-Integral Molecular Dynamics.

نویسندگان

  • Ondrej Marsalek
  • Pei-Yang Chen
  • Romain Dupuis
  • Magali Benoit
  • Merlin Méheut
  • Zlatko Bačić
  • Mark E Tuckerman
چکیده

The problem of computing free energy differences due to isotopic substitution in chemical systems is discussed. The shift in the equilibrium properties of a system upon isotopic substitution is a purely quantum mechanical effect that can be quantified using the Feynman path integral approach. In this paper, we explore two developments that lead to a highly efficient path integral scheme. First, we employ a mass switching function inspired by the work of Ceriotti and Markland [ J. Chem. Phys. 2013, 138, 014112] that is based on the inverse square root of the mass and which leads to a perfectly constant free energy derivative with respect to the switching parameter in the harmonic limit. We show that even for anharmonic systems, this scheme allows a single-point thermodynamic integration approach to be used in the construction of free energy differences. In order to improve the efficiency of the calculations even further, however, we derive a set of free energy derivative estimators based on the fourth-order scheme of Takahashi and Imada [ J. Phys. Soc. Jpn. 1984, 53, 3765]. The Takahashi-Imada procedure generates a primitive fourth-order estimator that allows the number of imaginary time slices in the path-integral approach to be reduced substantially. However, as with all primitive estimators, its convergence is plagued by numerical noise. In order to alleviate this problem, we derive a fourth-order virial estimator based on a transferring of the difference between second- and fourth-order primitive estimators, which remains relatively constant as a function of the number of configuration samples, to the second-order virial estimator. We show that this new estimator converges as smoothly as the second-order virial estimator but requires significantly fewer imaginary time points.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient methods and practical guidelines for simulating isotope effects.

The shift in chemical equilibria due to isotope substitution is frequently exploited to obtain insight into a wide variety of chemical and physical processes. It is a purely quantum mechanical effect, which can be computed exactly using simulations based on the path integral formalism. Here we discuss how these techniques can be made dramatically more efficient, and how they ultimately outperfo...

متن کامل

Combined QM/MM and path integral simulations of kinetic isotope effects in the proton transfer reaction between nitroethane and acetate ion in water

An integrated Feynman path integral-free energy perturbation and umbrella sampling (PI-FEP/UM) method has been used to investigate the kinetic isotope effects (KIEs) in the proton transfer reaction between nitroethane and acetate ion in water. In the present study, both nuclear and electronic quantum effects are explicitly treated for the reacting system. The nuclear quantum effects are represe...

متن کامل

Molecular Dynamics Simulation and Free Energy Studies on the Interaction of Salicylic Acid with Human Serum Albumin (HSA)

Human serum albumin (HSA) is the most abundant protein in the blood plasma. Molecular dynamics simulations of subdomain IIA of HSA and its complex with salicylic acid (SAL) were performed to investigate structural changes induced by the ligand binding. To estimate the binding affinity of SAL molecule to subdomains IB and IIA in HSA protein, binding free energies were calculated using the Molecu...

متن کامل

Path integral molecular dynamics for Bose-Einstein and Fermi-Dirac statistics

We propose a promising extension of the path integral molecular dynamics method to Bose-Einstein and Fermi-Dirac statistics. The partition function for the quantum statistics was re-written in a form amenable to the molecular dynamics method with the aid of an idea of pseudopotential for the permutation of particles. Our pseudopotential is a rigorous one describing the whole effect of Bose-Eins...

متن کامل

Path Integral Monte Carlo and Density Functional Molecular Dynamics Simulations of Hot, Dense Helium

Two first-principles simulation techniques, path integral Monte Carlo (PIMC) and density functional molecular dynamics (DFT-MD), are applied to study hot, dense helium in the densitytemperature range of 0.387 – 5.35 g cm and 500 K – 1.28×10 K. One coherent equation of state (EOS) is derived by combining DFT-MD data at lower temperatures with PIMC results at higher temperatures. Good agreement b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of chemical theory and computation

دوره 10 4  شماره 

صفحات  -

تاریخ انتشار 2014